СОГЛАСОВАНО

Руководитель ГЦИ СИ ФГУП

«ВНИИМ им. Д.И. Менделеева»

Ханов Н.И.

2009 г.

Газоанализаторы портативные Drager Pac модификаций Pac 3500, Pac 5500 и Pac 7000 Внесть в Государственный реестр средств измерений

Регистрационный № 32633-09

Взамен № 32633-06

Выпускаются по технической документации фирмы «Dräger Safety AG & Co. KGaA», Германия.

Назначение и область применения

Газоанализаторы портативные Dräger Рас модификаций Рас 3500, Рас 5500 и Рас 7000 (далее - газоанализаторы) предназначены для автоматического непрерывного определения содержания кислорода (O_2), сероводорода (H_2S), оксида углерода (CO) и вредных газов на уровне предельно допустимых концентраций (ПДК) в воздухе рабочей зоны, а также сигнализации о превышении ПДК.

Область применения - контроль воздуха рабочей зоны, в том числе и на взрывоопасных объектах.

Описание

Газоанализаторы представляют собой автоматические портативные приборы непрерывного действия, обеспечивающие контроль содержания в воздухе следующих компонентов:

- кислород, оксид углерода, сероводород модификации Рас 3500, Рас 5500, Рас 7000;
- аммиак, оксид серы, фосфин, синильная кислота, диоксид азота, диоксид углерода, хлор, оксид этилена и др газы, см. таблицу 1 модификация Рас 7000

Газоанализаторы представляют собой портативные приборы непрерывного действия индивидуального пользования, выполненные в виде единого блока. Чувствительным элементом в газоанализаторах служит электрохимический сенсор. Приборы имеют цифровой дисплей, две кнопки управления, световую, звуковую, вибросигнализацию, а также ИК порт, обеспечивающий соединение с персональным компьютером.

Газоанализаторы Dräger Pac всех модификаций имеют два установленных порога сигнализации о превышении концентрации. Для сероводорода и оксида углерода первый порог (А1) соответствует значению ПДК рабочей зоны определяемого компонента, второй порог (А2) — значению 2 ПДК. В случае кислорода первый порог установлен на понижение концентрации (19 % (об.)), второй — на превышение (23 % (об.)). Установки порогов сигнализации можно изменить или установить с помощью интерфейсного модуля в комплекте с USB кабелем и программой Pac-Vision или CC- Vision, установленной на персональный компьютер.

Газоанализатор Dräger Рас модификации Рас 3500 имеет один незаменяемый сенсор, время службы которого составляет 2 года с момента первого включения прибора. Режим функциональной проверки позволяет контролировать правильность калибровки. С помощью регулируемого операционного таймера можно задавать эксплуатационные временные интервалы, например, дату калибровки или дату выключения, кроме того, имеет регистратор данных событий, позволяющий регистрировать до 60 событий заменяемый сенсор. В газоанализаторе также можно осуществить замену батарей.

Газоанализатор Dräger Рас модификации Рас 5500 включает в себя все функции Рас 3500, имеет только заменяемый сенсор

Газоанализатор Dräger Рас модификации Рас 7000 включает в себя все перечисленные выше функции, но имеет заменяемый сенсор, регистратор данных, позволяющий сохранять события и измеренную пиковую концентрацию с задаваемым интервалом. Кроме того, име-

ется защищенное паролем меню для калибровки и тревога по STEL – усредненному значению определяемого компонента за 15 минут.

Маркировка взрывозащиты: PO Exial X/0 ExiaIICT4 X.

Основные технические характеристики

1 Диапазоны измерений и пределы допускаемой основной погрешности газоанализаторов приведены в таблице 1.

Таблица 1

								Таблица 1
Модифи-	Измеритель-	Диапазон	Диапа-	Преде	лы до-	Номи-	Время	Назначение
кация га-	ный канал -	показаний	зон из-	•	мой ос-	нальная	уста-	
зоанали-	определяемый	объемной	мерений	новно	ой по-	цена	новле-	
затора	компонент	доли,	объемной	грешн	ости, %	единицы	ния	
	(ПДК** ⁾ в	млн 1	доли,	77		наи-	пока-	
	ppm),	(ppm)	млн-1	Приве-	Отно-	меньше-	заний,	
	обозначение		(ppm)	денной		го разря-	$T_{0,9}, c$	
	сменного		1	(γ)	ной (δ)	да дис-		
	сенсора					плея,		
						ppm		
1.	2.	3.	4.	5.	6.	7.	8	9.
Pac 3500,	Кислород	(2 - 25)	(2 - 5)	,		0,1	10	Контроль
Pac 5500,	$XXS O_2$	% (об.)	% (об.)	± 5	-	% (об.)		ПДК и при
Pac 7000	68 10 881		(5 - 25)					аварийных
			% (об.)	-	± 5			ситуациях
- « -	Сероводород	0 - 100	0 - 10	± 20	-	1	15	- « -
	(7)		10 - 100	-	± 20			
	$XXSH_2S$							
	68 10 883							
- « -	Оксид	0 - 500	0 - 20	± 15	-	1	20	- « -
	углерода	0 - 2000	20 - 2000	-	± 15			
	(17,2)							
	XXS CO							
	68 10 882							
Pac 7000	Сероводород	0 - 100	0 -10	± 20	-	1	15	- « -
	(7)		10 - 100	-	± 20			
	XXS H ₂ S LC							
	68 11 525							
- « -	Хлор	0 - 20	0 - 1	± 20	-	0,1	30	При ава-
	(0,35)		1 - 20	-	± 20			рийных си-
	XXS Cl ₂ *)							туациях
	68 10 890							
- « -	Диоксид	(0-5)	(0-5)	± 20	-	0,1 %	25	- « -
	углерода	% (об.)	% (об.)			(об.)		
	(-)							
	XXS CO ₂							
	68 10 889							
- « -	Цианистый	0 - 50	0 - 10	± 15	-	0,1	25	- « -
	водород		10 - 50	-	-			
1	(0,27)							
	XXS HCN							
	68 10 887					<u> </u>		

Продолжение таблицы 1

								е таблицы 1
1.	2.	3.	4.	5.	6.	7.	8.	9.
- « -	Фосфин (0,07) Арсин (0,03) XXS PH ₃ *)	0 - 20	0 - 1 1 - 20	± 20 -	-	0,1	10	- « -
	68 10 886							
- « -	Аммиак (28,2) XXS NH ₃ 68 10 888	0 - 300	0 - 20 20 - 300	± 15 -	± 15	1	40	Контроль ПДК и при аварийных ситуациях
- « -	Диоксид азота (1,0) XXS NO ₂ 68 10 884	0 - 50	0 - 20 20 - 50	± 15 -	- ± 15	1	15	При аварийных ситуациях
- « -	Диоксид серы (3,8) XXS SO ₂ 68 10 885	0 - 100	0 - 10 10 - 100	± 20 -	- ± 20	1	15	- « -
- « -	Оксид этилена C_2H_4O (0,5) XXS OV* $^{\circ}$, 68 11 530	0-20 0-50 0-200	0 - 20 20 - 50 -	± 15 - -	± 15	0,5	120	- « -
	Этилен С ₂ H ₄ (86,2) - « -	0-20 0-50 0-100	0 - 20 20 - 100	± 15 -	- ±15	0,5	- « -	Контроль ПДК
	Пропилен	0-20 0-50 0-100	0 - 50 50 - 100	± 15 -	- ± 15	2	- « -	- « -
	Винилхлорид C ₂ H ₃ Cl (1,9/04) - « -	0-20 0-50 0-100	0 - 20 20 - 100	± 20 -	± 20	0,5	- « -	При аварийных ситуациях
	Метанол СН ₃ ОН (3,8) - « -	0-20 0-50 0-200	0 - 5 5 - 50 0 - 200	± 20 - ± 15	- ± 20 -	0,5	- « -	Контроль ПДК и при аварийных ситуациях
	Бутадиен СН ₂ СНСНСН ₂ (45,4) - « -	0-20 0-50 0-100	0 - 50 50 - 100	± 20 -	± 20	1	- « -	- « -
	Формальдегид CH ₂ O (0,4)	0-20 0-50 0-100	0 – 20 20 - 100	± 25 -	-	2	- « -	При аварийных ситуациях
	Изопропанол (H ₃ C) ₂ CHOH (-)	0-100 0-200 0-300	0 50	± 15	-	2	- « -	Контроль воздуха
	Стирол С ₆ H ₅ CHCH ₂ (6,9/2,3)	0-100	0 - 20 20 - 100	± 20 -	± 20	1	- « -	При аварийных ситуациях

Продолжение таблицы 1

1.	2.	3.	4.	5.	6.	7.	8.	9.
	<u> </u>				0.	1		
- « -	Оксид этилена	0-20	0 - 20	± 15	-	1	220	- « -
	C_2H_4O	0-50	20 - 50	-	± 15			
	(0,5)	0-200	-	-	-			
	XXS							
	OV-A*),							
	68 11 535							
	Акри-	0-100	0 - 10	± 20	-	1	- « -	- « -
	лонитрил		10 - 100	-	-			
	H ₂ CCHCN							
	(0,2)		,					
	- « -							
	Изобутилен	0-100	0 - 50	± 20	-	2	- « -	Контроль
	$(CH_3)_2CCH_2$	0-200	50 - 100		± 20			ПДК и при
	(43,5)	0-300	0 - 300					аварийных
	- « -							ситуациях
	Винилацетат	0-20	0 - 20	± 20	_	1	- « -	При аварий-
İ	CH ₃ COOC ₂ H ₃	0-50	20 - 100	1 20		1	**	ных ситуа-
	(2,8)	0-100	20 100	-				циях
	Этанол	0-100	0 - 100	± 15	_	2	- « -	Контроль 0,5
	C ₂ H ₅ OH	0-200	0 - 200	ì	_		- // -	ПДК
-	(521)	0-200	0 - 300	± 15	_			11/41
	(321)	0-300	0 - 300	± 15	-			
		0-50	0 - 20	. 20		1	.,	Пруг оролугу
	Ацетальдегид	t .	I	± 20	-	1	- « -	При аварий-
	CH ₃ CHO	0-100	20 - 200	-	-			ных ситуа-
	(2)	0-200						циях
	- « -	0.50	0.50	1 1 5		1		TC = ====
	Диэтиловый	0-50	0 - 50	± 15	-	1	- « -	Контроль
	эфир	0-200	0 - 100	± 15	-			ПДК
	$(C_2H_5)_2O$		100 - 200	-	± 15	1		
	(98)							
	- « -							
	Ацетилен	0-100	0-100	± 15	-	1	- « -	- « -
	C_2H_2	0-500	0-500	± 15	-			
	(-)							
	- « -							

Примечания:

- 2 Пределы допускаемой вариации выходного сигнала равны 0,5 в долях от пределов допускаемой основной погрешности.
- 3 Предел допускаемого изменения выходного сигнала (показаний) при непрерывной работе в течение месяца (Δ_{tn}) равен 0,5 в долях от пределов допускаемой основной погрешности.
- 4 Пределы допускаемой дополнительной погрешности от влияния изменения температуры окружающей среды в пределах рабочих условий на каждые 10°C равны 0,5 в долях от пределов допускаемой основной погрешности.
- 5 Пределы допускаемой дополнительной погрешности от влияния изменения относительной влажности окружающей среды в пределах рабочих условий равны 0,5 в долях от пределов допускаемой основной погрешности.

^{*)} при условии загазованности контролируемой воздушной среды источниками, выделяющими только один определяемый компонент.

^{**)} ПДК — предельно допустимая концентрация вредного вещества в воздухе рабочей зоны в соответствии с ГОСТ 12.1.005-88.

- 6 Пределы допускаемой дополнительной погрешности от влияния изменения атмосферного давления в пределах рабочих условий на каждые 3,3 кПа равны 0,2 в долях от пределов допускаемой основной погрешности.
- 7 Пределы допускаемой дополнительной погрешности от влияния неизмеряемых компонентов, перечень которых указан в паспорте на сенсор, и содержание которых не более санитарных норм по ГОСТ 12.1.005, равны 1,5 в долях от пределов допускаемой основной погрешности.

Примечание: при измерении СО должны отсутствовать водород и этилен.

- 8 Время прогрева и самодиагностики не более 20 с (при замене батареи и сенсора время прогрева составляет не более 15 мин).
- 9 Габаритные размеры газоанализаторов, мм, не более:

ширина -64;

высота - 84;

глубина - 20 (батарейный отсек -25).

- 10 Масса газоанализаторов, г, не более: 106.
- 11 Электрическое питание: литиевая батарея (напряжение 3,6 В).
- 12 Условия эксплуатации*:
- диапазон температуры окружающей среды

от минус 30°C до 50°C

• диапазон относительной влажности

от 10 до 90% при 25°C

• диапазон атмосферного давления

от 70 до 130 кПа

• содержание неизмеряемых компонентов не должно превышать санитарные нормы согласно ГОСТ 12.1.005.

Примечание: * указаны предельные значения. Конкретные значения для каждого сенсора приведены в РЭ на газоанализатор.

- 13 Срок службы газоанализаторов модификаций Рас 5500, Рас 7000, не менее: 8 лет;
- 14 Срок службы газоанализаторов модификаций Рас 3500, не менее: 2 года.
- 15 Срок службы сенсоров, не менее: 2 года.

Знак утверждения типа

Знак утверждения типа наносят типографским способом на специальную наклейку на задней панели газоанализаторов и на титульный лист руководства по эксплуатации.

Комплектность Комплектность поставки газоанализаторов приведена в таблице 2.

Таблица 2

			таолица 2
$N_{\underline{0}}$ n/n	Наименование	Обозначение	Количество
1	Газоанализатор*	Pac 3500 Pac 5500 Pac 7000	1 шт.
2	Интерфейсный модуль в комплекте с USB кабелем и программой Pac Vision или CC- Vision		**
3	Кожаный футляр для переноски		**
4	Литиевая батарея		**
5	E-Cal - адаптер		**
6	Сменный защитный фильтр		**
7	Руководство по эксплуатации		1 экз.
8	Методика поверки	МП 242- 0356-2009	1 экз.

Примечания:

- 1. * модификация и измеряемый компонент определяется заказчиком.
- 2. ** поставляется по отдельному заказу.

Поверка

Поверка газоанализаторов осуществляется в соответствии с документом № МП-242-0356-2009 «Газоанализаторы Drager Pac. Модификации Pac 3500, Pac 5500, Pac 7000. Методика поверки», разработанным и утвержденным ГЦИ СИ ФГУП "ВНИИМ им. Д.И. Менделеева" в марте 2009 г.

Основные средства поверки:

- генератор газовых смесей ГГС-03-03 по ШДЕК.418313.001 ТУ (№ 19351-05 в Госреестре РФ) в комплекте со стандартными образцами состава: газовые смеси CO/N_2 , H_2S/N_2 , NO_2/N_2 , $C_2H_4/воздух$, C_3H_6/N_2 , $C_4H_8/воздух$, C_2H_2/N_2 , выпускаемые по ТУ 6-16-2956-92;
- стандартные образцы состава: газовые смеси H_2S/N_2 , O_2/N_2 , CO_2/N_2 , $NH_3/воздух$, SO_2/N_2 , C_2H_5OH/N_2 , выпускаемые по ТУ 6-16-2956-92;
- генератор термодиффузионный ТДГ-01 по ЩДЕК.418319.001 ТУ (№ 19454-05 в Госреестре РФ) в комплекте с источниками микропотоков ИМ на хлор, оксид этилена, формальдегид, винилхлорид, изопропанол, акрилонитрил, винилацетат, ацетальдегид, диэтиловый эфир, выпускаемые по ИБЯЛ.418319.013 ТУ;
- парофазные источники газовых смесей ПИГС(№ 18358-05 в Госреестре РФ) на метанол, стирол, выпускаемые по ТУ 4215-001-208106464-99;
- установка газодинамическая высшей точности УВТ-Ф для получения газовой смеси на основе PH₃ (регистрационный № 60-A-89);
- газоаналитический комплекс «МОГАИ-6» ИРМБ.413426.001 РЭ (№ 19858-00 в Госреестре РФ) для получения газовой смеси на основе HCN;
- азот газообразный по ГОСТ 9293-74;
- поверочный нулевой воздух по ТУ 6-21-5-85.

Допускается применять другие средства поверки, не приведенные в перечне, но обеспечивающие определение метрологических характеристик с требуемой точностью.

Межповерочный интервал - 1 год.

Нормативные и технические документы

- 1. ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 2. ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические требования.
- 3. ГОСТ 12.1.005-88 Общие санитарно-гигиенические требования к воздуху рабочей зоны.
 - 4. ГОСТ 12997-84 «Изделия ГСП. Общие технические условия».
 - 5. Техническая документация фирмы-изготовителя.

Заключение

Тип газоанализаторов Drager Рас модификаций Рас 3500, Рас 5500, Рас 7000 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при ввозе в РФ, после ремонта и в эксплуатации согласно государственной поверочной схеме.

Газоанализаторы Drager Рас модификаций Рас 3500, Рас 5500, Рас 7000 имеют сертификат соответствия РОСС DE.ГБ05.В02616, выданный НАНИО «Центр по сертификации взрывозащищенного и рудничного электрооборудования» 12 февраля 2009 г.

Изготовитель: фирма «Drager Safety AG & Co.KGaA» Revalstrasse 1, 23560, Luebeck, Germany, Tel +49 451 882 0 Fax +49 451 882 2080. Ремонт производится фирмой "Drager Safety AG & co.KGaA", Германия.

Руководитель научно-исследовательского отдела Государственных эталонов

в области физико-химических измерений ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»

Л.А. Конопелько

Глава представительства фирмы «Drager Safety AG & Co.KGaA»

Olga Danne

Михаэль Мюлиш

Dräger

Dräger Safety AG & Co. KGaA Revalstrasse 1 29560 Lübeck, Germany www.draeger.com